win32: LIBS += -L$$PWD/lib/OpenCV320/x86/mingw/lib/ -llibopencv_core320.dllINCLUDEPATH += $$PWD/lib/OpenCV320/include/DEPENDPATH += $$PWD/lib/OpenCV320/include/win32: LIBS += -L$$PWD/lib/OpenCV320/x86/mingw/lib/ -llibopencv_highgui320.dllINCLUDEPATH += $$PWD/lib/OpenCV320/include/DEPENDPATH += $$PWD/lib/OpenCV320/include/win32: LIBS += -L$$PWD/lib/OpenCV320/x86/mingw/lib/ -llibopencv_imgcodecs320.dllINCLUDEPATH += $$PWD/lib/OpenCV320/include/DEPENDPATH += $$PWD/lib/OpenCV320/include/win32: LIBS += -L$$PWD/lib/OpenCV320/x86/mingw/lib/ -llibopencv_imgproc320.dllINCLUDEPATH += $$PWD/lib/OpenCV320/include/DEPENDPATH += $$PWD/lib/OpenCV320/include/win32: LIBS += -L$$PWD/lib/OpenCV320/x86/mingw/lib/ -llibopencv_features2d320.dllINCLUDEPATH += $$PWD/lib/OpenCV320/include/DEPENDPATH += $$PWD/lib/OpenCV320/include/win32: LIBS += -L$$PWD/lib/OpenCV320/x86/mingw/lib/ -llibopencv_calib3d320.dllINCLUDEPATH += $$PWD/lib/OpenCV320/include/DEPENDPATH += $$PWD/lib/OpenCV320/include/
/// OpenCV Headers#include "opencv2/core/core.hpp"#include "opencv2/imgproc/imgproc.hpp"#include "opencv2/highgui/highgui.hpp"/// C++ Standard Libraries#include <cmath>#include <iostream>#include <stdexcept>#include <vector>using namespace std;/// define the corner points/// Note that GDAL can natively determine thiscv::Point2d tl( -122.441017, 37.815664 );cv::Point2d tr( -122.370919, 37.815311 );cv::Point2d bl( -122.441533, 37.747167 );cv::Point2d br( -122.3715, 37.746814 );/// determine dem cornerscv::Point2d dem_bl( -122.0, 38);cv::Point2d dem_tr( -123.0, 37);/// range of the heat map colorsstd::vector<std::pair<cv::Vec3b,double> > color_range;/// List of all function prototypescv::Point2d lerp( const cv::Point2d&, const cv::Point2d&, const double& );cv::Vec3b get_dem_color( const double& );cv::Point2d world2dem( const cv::Point2d&, const cv::Size&);cv::Point2d pixel2world( const int&, const int&, const cv::Size& );void add_color( cv::Vec3b& pix, const uchar& b, const uchar& g, const uchar& r );/** * Linear Interpolation * p1 - Point 1 * p2 - Point 2 * t - Ratio from Point 1 to Point 2*/cv::Point2d lerp( cv::Point2d const& p1, cv::Point2d const& p2, const double& t ){ return cv::Point2d( ((1-t)*p1.x) + (t*p2.x), ((1-t)*p1.y) + (t*p2.y));}/** * Interpolate Colors*/template <typename DATATYPE, int N>cv::Vec<DATATYPE,N> lerp( cv::Vec<DATATYPE,N> const& minColor, cv::Vec<DATATYPE,N> const& maxColor, double const& t ){ cv::Vec<DATATYPE,N> output; for( int i=0; i<N; i++ ){ output[i] = (uchar)(((1-t)*minColor[i]) + (t * maxColor[i])); } return output;}/** * Compute the dem color*/cv::Vec3b get_dem_color( const double& elevation ){ // if the elevation is below the minimum, return the minimum if( elevation < color_range[0].second ){ return color_range[0].first; } // if the elevation is above the maximum, return the maximum if( elevation > color_range.back().second ){ return color_range.back().first; } // otherwise, find the proper starting index int idx=0; double t = 0; for( int x=0; x<(int)(color_range.size()-1); x++ ){ // if the current elevation is below the next item, then use the current // two colors as our range if( elevation < color_range[x+1].second ){ idx=x; t = (color_range[x+1].second - elevation)/ (color_range[x+1].second - color_range[x].second); break; } } // interpolate the color return lerp( color_range[idx].first, color_range[idx+1].first, t);}/** * Given a pixel coordinate and the size of the input image, compute the pixel location * on the DEM image.*/cv::Point2d world2dem( cv::Point2d const& coordinate, const cv::Size& dem_size ){ // relate this to the dem points // ASSUMING THAT DEM DATA IS ORTHORECTIFIED double demRatioX = ((dem_tr.x - coordinate.x)/(dem_tr.x - dem_bl.x)); double demRatioY = 1-((dem_tr.y - coordinate.y)/(dem_tr.y - dem_bl.y)); cv::Point2d output; output.x = demRatioX * dem_size.width; output.y = demRatioY * dem_size.height; return output;}/** * Convert a pixel coordinate to world coordinates*/cv::Point2d pixel2world( const int& x, const int& y, const cv::Size& size ){ // compute the ratio of the pixel location to its dimension double rx = (double)x / size.width; double ry = (double)y / size.height; // compute LERP of each coordinate cv::Point2d rightSide = lerp(tr, br, ry); cv::Point2d leftSide = lerp(tl, bl, ry); // compute the actual Lat/Lon coordinate of the interpolated coordinate return lerp( leftSide, rightSide, rx );}/** * Add color to a specific pixel color value*/void add_color( cv::Vec3b& pix, const uchar& b, const uchar& g, const uchar& r ){ if( pix[0] + b < 255 && pix[0] + b >= 0 ){ pix[0] += b; } if( pix[1] + g < 255 && pix[1] + g >= 0 ){ pix[1] += g; } if( pix[2] + r < 255 && pix[2] + r >= 0 ){ pix[2] += r; }}/** * Main Function*/int main(int argc, char *argv[]){ /** * Check input arguments */ if( argc < 3 ){ cout << "usage: " << argv[0] << " <image> <dem>" << endl; return 1; } /// load the image (note that we don't have the projection information. You will /// need to load that yourself or use the full GDAL driver. The values are pre-defined /// at the top of this file cv::Mat image = cv::imread(argv[1], cv::IMREAD_LOAD_GDAL | cv::IMREAD_COLOR ); /// load the dem model cv::Mat dem = cv::imread(argv[2], cv::IMREAD_LOAD_GDAL | cv::IMREAD_ANYDEPTH ); /// create our output products cv::Mat output_dem( image.size(), CV_8UC3 ); cv::Mat output_dem_flood( image.size(), CV_8UC3 ); /// for sanity sake, make sure GDAL Loads it as a signed short if( dem.type() != CV_16SC1 ){ throw std::runtime_error("DEM image type must be CV_16SC1"); } /// define the color range to create our output DEM heat map // Pair format ( Color, elevation ); Push from low to high // Note: This would be perfect for a configuration file, but is here for a working demo. color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 188, 154, 46), -1)); color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 110, 220, 110), 0.25)); color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 150, 250, 230), 20)); color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 160, 220, 200), 75)); color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 220, 190, 170), 100)); color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 250, 180, 140), 200)); // define a minimum elevation double minElevation = -10; // iterate over each pixel in the image, computing the dem point for( int y=0; y<image.rows; y++ ){ for( int x=0; x<image.cols; x++ ){ // convert the pixel coordinate to lat/lon coordinates cv::Point2d coordinate = pixel2world( x, y, image.size() ); // compute the dem image pixel coordinate from lat/lon cv::Point2d dem_coordinate = world2dem( coordinate, dem.size() ); // extract the elevation double dz; if( dem_coordinate.x >= 0 && dem_coordinate.y >= 0 && dem_coordinate.x < dem.cols && dem_coordinate.y < dem.rows ){ dz = dem.at<short>(dem_coordinate); }else{ dz = minElevation; } // write the pixel value to the file output_dem_flood.at<cv::Vec3b>(y,x) = image.at<cv::Vec3b>(y,x); // compute the color for the heat map output cv::Vec3b actualColor = get_dem_color(dz); output_dem.at<cv::Vec3b>(y,x) = actualColor; // show effect of a 10 meter increase in ocean levels if( dz < 10 ){ add_color( output_dem_flood.at<cv::Vec3b>(y,x), 90, 0, 0 ); } // show effect of a 50 meter increase in ocean levels else if( dz < 50 ){ add_color( output_dem_flood.at<cv::Vec3b>(y,x), 0, 90, 0 ); } // show effect of a 100 meter increase in ocean levels else if( dz < 100 ){ add_color( output_dem_flood.at<cv::Vec3b>(y,x), 0, 0, 90 ); } }} // print our heat map cv::imwrite( "heat-map.jpg" , output_dem ); // print the flooding effect image cv::imwrite( "flooded.jpg", output_dem_flood); return 0;}
C++ (Qt)LIBS += -L$$(PATH_TO_OPENCV_SDK)/x86/mingw/lib \-lopencv_core320 \-lopencv_highgui320 \-lopencv_imgcodecs320 \-lopencv_imgproc320 \-lopencv_features2d320 \-lopencv_calib3d320